详细信息
Growth of certain harmonic functions in an n-dimensional cone
Growth of certain harmonic functions in an n-dimensional cone
文献类型:期刊文献
中文题名:Growth of certain harmonic functions in an n-dimensional cone
英文题名:Growth of certain harmonic functions in an n-dimensional cone
作者:Lei QIAO[1];Guantie DENG[2]
第一作者:乔蕾
机构:[1]Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002, China;[2]School of Mathematical Science, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China
第一机构:河南财经政法大学数学与信息科学学院
年份:2013
期号:4
起止页码:891-905
中文期刊名:中国数学前沿:英文版
外文期刊名:Frontiers of Mathematics in China
收录:Scopus;CSCD:【CSCD2013_2014】;
基金:This work was supported by the National Natural Science Foundation of China (Grant Nos. 11271045, 11226093) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20100003110004).
语种:中文
中文关键词:次谐波;n维;调和函数;生长特性
外文关键词:Growth property, harmonic function, cone
摘要:我们在一个锥在无穷给泛音功能的生长性质,它概括 Siegel-Talvila 获得的结果。
We give the growth properties of harmonic functions at infinity in a cone, which generalize the results obtained by Siegel-Talvila.
参考文献:
正在载入数据...