详细信息
双曲型积分微分方程一个新H^1-Galerkin混合元格式
A New H^1-Galerkin Mixed Finite Element Method for the Hyperbolic Type Integro-differential Equation
文献类型:期刊文献
中文题名:双曲型积分微分方程一个新H^1-Galerkin混合元格式
英文题名:A New H^1-Galerkin Mixed Finite Element Method for the Hyperbolic Type Integro-differential Equation
作者:石东洋[1];王海红[2]
第一作者:石东洋
机构:[1]郑州大学数学系;[2]河南财经学院计算机与信息工程学院
第一机构:郑州大学数学系,郑州450052
年份:2009
卷号:26
期号:4
起止页码:648-652
中文期刊名:工程数学学报
外文期刊名:Chinese Journal of Engineering Mathematics
收录:CSTPCD;;Scopus;北大核心:【北大核心2008】;CSCD:【CSCD2011_2012】;
基金:国家自然科学基金(10671184)
语种:中文
中文关键词:H1-Galerkin混合元;双曲积分微分方程;误差估计;超逼近和超收敛
外文关键词:H^1-Galerkin mixed finite element; hyperbolic type integro-differential equations; error estimate; superclose and superconvergence
摘要:在半离散格式下,本文针对一类双曲型积分微分方程,研究了一个新的H1-Galerkin混合有限元方法。该方法不需要满足离散的LBB条件,而且网格剖分不需要满足正则性条件。利用单元的特殊性质,在不需要使用Rita-Volterra投影,而是直接使用插值的情况下,得到了与传统混合有限元方法相同的误差估计,并且得到了超逼近性质。最后,通过使用插值后处理技巧,还得到了相应的超收敛结果。
A new H^1-Galerkin mixed finite element method for hyperbolic type integro-differential equations is studied. It is not necessary for our method to satisfy the discrete LBB condition, and the regularity condition is not necessary for the meshes subdivision. By using a special property of the elements, the error estimates, which are as good as that of the traditional mixed finite element methods, are obtained by the interpolation function without Ritz-Volterra projection. Furthermore, the superclose property is derived for the method. Finally, the corresponding global superconvergence is got by taking the advantage of the technique of the post-processing operator.
参考文献:
正在载入数据...