详细信息
Picard Type Theorems Concerning Certain Small Functions
文献类型:期刊文献
中文题名:Picard Type Theorems Concerning Certain Small Functions
英文题名:Picard Type Theorems Concerning Certain Small Functions
作者:Pai YANG[1];Lei QIAO[2]
第一作者:Pai YANG
机构:[1]College of Applied Mathematics, Chengdu University of Information Technology;[2]School of of Mathematics and Information Science, He'nan University of Economics and Law
第一机构:College of Applied Mathematics, Chengdu University of Information Technology
年份:2017
卷号:33
期号:9
起止页码:1275-1286
中文期刊名:数学学报:英文版
收录:CSTPCD;;Scopus;CSCD:【CSCD2017_2018】;PubMed;
基金:Supported by the National Natural Science Foundation of China(Grant Nos.11301140,11671191 and 11501367);China Postdoctoral Science Foundation(Grant No.2015M571726);the Project of Sichuan Provincial Department of Education(Grant No.15ZB0172)
语种:英文
中文关键词:Meromorphic 功能;Nevanlinna 理论;Picard 类型定理;
外文关键词:Meromorphic function, Nevanlinna theory, Picard type theorem
摘要:Let f(z) be a meromorphic function in the complex plane, whose zeros have multiplicity at least k + 1(k ≥ 2). If sin z is a small function with respect to f(z), then f^(k)(z)-P(z) sin z has infinitely many zeros in the complex plane, where P(z) is a nonzero polynomial of deg(P(z)) ≠ 1.
Let f(z) be a meromorphic function in the complex plane, whose zeros have multiplicity at least k + 1 (k 〉 2). If sin z is a small function with respect to f(z), then f(k) (z) - P(z) sin z has infinitely many zeros in the complex plane, where P(z) is a nonzero polynomial of deg(P(z)) ≠ 1. Keywords Meromorphic function, Nevanlinna theory, Picard type theorem.
参考文献:
正在载入数据...