详细信息
Picard Type Theorems Concerning Certain Small Functions ( SCI-EXPANDED收录)
文献类型:期刊文献
英文题名:Picard Type Theorems Concerning Certain Small Functions
作者:Yang, Pai[1];Qiao, Lei[2]
第一作者:Yang, Pai
通讯作者:Yang, P[1]
机构:[1]Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China;[2]Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450046, Henan, Peoples R China
第一机构:Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
通讯机构:[1]corresponding author), Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China.
年份:2017
卷号:33
期号:9
起止页码:1275-1286
外文期刊名:ACTA MATHEMATICA SINICA-ENGLISH SERIES
收录:;Scopus(收录号:2-s2.0-85019264384);WOS:【SCI-EXPANDED(收录号:WOS:000407226600009)】;
基金:Supported by the National Natural Science Foundation of China (Grant Nos. 11301140, 11671191 and 11501367), China Postdoctoral Science Foundation (Grant No. 2015M571726) and the Project of Sichuan Provincial Department of Education (Grant No. 15ZB0172)
语种:英文
外文关键词:Meromorphic function; Nevanlinna theory; Picard type theorem
摘要:Let f (z) be a meromorphic function in the complex plane, whose zeros have multiplicity at least k + 1 (k >= 2). If sin z is a small function with respect to f (z), then f((k))(z) - P(z) sin z has infinitely many zeros in the complex plane, where P (z) is a nonzero polynomial of deg (P(z)) not equal 1.
参考文献:
正在载入数据...