登录    注册    忘记密码

详细信息

基于热点解和差分进化的多目标聚类集成算法    

Multi-objective clustering ensemble algorithm based on knees solutions and differential evolution

文献类型:期刊文献

中文题名:基于热点解和差分进化的多目标聚类集成算法

英文题名:Multi-objective clustering ensemble algorithm based on knees solutions and differential evolution

作者:李莉[1];李妍琰[2]

第一作者:李莉

机构:[1]河南工程学院计算机学院;[2]河南财经政法大学计算机与信息工程学院

第一机构:河南工程学院计算机学院,河南郑州451191

年份:2014

卷号:35

期号:8

起止页码:2912-2916

中文期刊名:计算机工程与设计

外文期刊名:Computer Engineering and Design

收录:CSTPCD;;北大核心:【北大核心2011】;CSCD:【CSCD_E2013_2014】;

基金:国家青年基金项目(61301232);河南省教育厅科学技术研究重点基金项目(13A520148)

语种:中文

中文关键词:多目标聚类;聚类集成;热点解;差分进化;全局寻优

外文关键词:multi-objective clustering; clustering ensemble; knees solution; differential evolution; global optimization

摘要:针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强潜在最优区域的搜索;在后续集成操作中只采用热点解及其邻域个体,去除较差解对最终结果的影响。在优化过程中采用改进的差分进化算子提高全局寻优的能力,去除编码长度不一对算子使用的影响。对3组UCI数据的测试结果表明,该算法优于2种对比算法,其RI取值提高了0.0021~0.0524,FM取值提高了0.0134~0.0591。
The effect of ensemble operator in the multiobjective clustering ensemble algorithm is weakened by the bad solutions of the obtained solution set. A novel multi-objective clustering ensemble algorithm based on searching knees solutions and differential evolution was proposed to solve the problem. The promising solutions based on the notion of “knees” were found out and used to guide the search direction for enhancing the promising regions. During the ensemble operation process, only knees solutions and their neighbors were used so that the bad solutions did not influence the final results. An advanced differential evolution operator (DEO) was designed to improve the global searching ability and to solve the problem caused when using the DEO for varying codes. The test results show that the proposed algorithm works better than the other two algorithms, the RI values are improved 0. 0021 to 0. 0524, and the FM values are improved 0. 0134 to 0. 0591.

参考文献:

正在载入数据...

版权所有©河南财经政法大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心