登录    注册    忘记密码

详细信息

Two-Stage Multisplitting Iteration Methods Using Modulus-Based Matrix Splitting as Inner Iteration for Linear Complementarity Problems  ( SCI-EXPANDED收录)  

文献类型:期刊文献

英文题名:Two-Stage Multisplitting Iteration Methods Using Modulus-Based Matrix Splitting as Inner Iteration for Linear Complementarity Problems

作者:Zhang, Li-Li[1]

通讯作者:Zhang, LL[1]

机构:[1]Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100190, Peoples R China

第一机构:Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100190, Peoples R China

通讯机构:[1]corresponding author), Henan Univ Econ & Law, Dept Math & Informat Sci, Zhengzhou 450002, Peoples R China.|[1048425]河南财经政法大学数学与信息科学学院;[10484]河南财经政法大学;

年份:2014

卷号:160

期号:1

起止页码:189-203

外文期刊名:JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS

收录:;Scopus(收录号:2-s2.0-84893781415);WOS:【SCI-EXPANDED(收录号:WOS:000330586300009)】;

语种:英文

外文关键词:Linear complementarity problem; Matrix multisplitting; Modulus method; Two-stage iteration; Convergence

摘要:The matrix multisplitting iteration method is an effective tool for solving large sparse linear complementarity problems. However, at each iteration step we have to solve a sequence of linear complementarity sub-problems exactly. In this paper, we present a two-stage multisplitting iteration method, in which the modulus-based matrix splitting iteration and its relaxed variants are employed as inner iterations to solve the linear complementarity sub-problems approximately. The convergence theorems of these two-stage multisplitting iteration methods are established. Numerical experiments show that the two-stage multisplitting relaxation methods are superior to the matrix multisplitting iteration methods in computing time, and can achieve a satisfactory parallel efficiency.

参考文献:

正在载入数据...

版权所有©河南财经政法大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心