详细信息
Efficient and Stable Numerical Methods for Multi-Term Time Fractional Sub-Diffusion Equations ( SCI-EXPANDED收录)
文献类型:期刊文献
英文题名:Efficient and Stable Numerical Methods for Multi-Term Time Fractional Sub-Diffusion Equations
作者:Ren, Jincheng[1,2];Sun, Zhi-zhong[2]
第一作者:Ren, Jincheng
通讯作者:Sun, ZZ[1]
机构:[1]Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450000, Peoples R China;[2]Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
第一机构:河南财经政法大学数学与信息科学学院
通讯机构:[1]corresponding author), Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China.
年份:2014
卷号:4
期号:3
起止页码:242-266
外文期刊名:EAST ASIAN JOURNAL ON APPLIED MATHEMATICS
收录:;Scopus(收录号:2-s2.0-84904580637);WOS:【SCI-EXPANDED(收录号:WOS:000340033900003)】;
基金:We express our gratitude to the editor and referees for valuable comments and suggestions. This research is supported by the National Natural Science Foundation of China (No. 11271068), the Foundation of Henan Educational Committee (No. 13B110190) and the Natural Science Foundation of Henan Province (No. 142300410115).
语种:英文
外文关键词:Multi-term time fractional sub-diffusion equations; compact /compact ADI difference scheme; discrete energy method; convergence
摘要:Some efficient numerical schemes are proposed for solving one-dimensional (1D) and two-dimensional (2D) multi-term time fractional sub-diffusion equations, combining the compact difference approach for the spatial discretisation and L1 approximation for the multi-term time Caputo fractional derivatives. The stability and convergence of these difference schemes are theoretically established. Several numerical examples are implemented, testifying to their efficiency and confirming their convergence order.
参考文献:
正在载入数据...